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(1) Department of physics, University of California, Santa Barbara, California 93106, U.S.A.
(2) Lawrence Livermore National Lab - CMS/MSTD, Livermore, California 94550, U.S.A. and

(3) L.M.D.H. - Universite Paris VI, UMR 7603, 4 place Jussieu, 75005 Paris - France
(Dated: January 26, 2004)

We present the results of numerical simulations of an atomistic system undergoing plastic shear
flow in the athermal, quasistatic limit. The system is shown to undergo cascades of local rear-
rangements, associated with quadrupolar energy fluctuations, which induce system-spanning events
organized into lines of slip oriented along the Bravais axes of the simulation cell. A finite size scaling
analysis reveals subextensive scaling of the energy drops and participation numbers, linear in the
length of the simulation cell, in good agreement with the real-space structure of plastic events

The recent years have seen an important number of
numerical and theoretical studies of plasticity in amor-
phous materials. The microscopic picture of plastic de-
formations which emerges from these studies, however,
is still incomplete... at best, fragmented. Numerical evi-
dence that plastic deformation involves highly heteroge-
nous displacements of molecules led, early on, to the
concept of “shear transformation zones”, which are ex-
pected to play, for amorphous solids, the rôle of defects
in crystals . [1–3] Most theoretical models of plasticity
rely on this idea and, following Eshelby, [4] on the expec-
tation that elementary shear transformations are associ-
ated with quadrupolar energy fluctuations. Theoretical
works indicate that the existence of quadrupolar elas-
tic fields, and the consequent long-range interactions be-
tween shear transformation zones is an important mech-
anism that can induce strain localization and fracture in
amorphous materials. [5–7] Although quadrupolar energy
fluctuations have been observed in a numerical model of
dry foams, [8] they have never been seen in molecular
systems.

This line of research should be contrasted with the
phase space interpretation of plastic deformation recently
proposed by Malandro and Lacks, [9] on the basis of the
inherent structure formalism. [10] These authors study
shear induced changes in the potential energy landscape,
and the consequences of such changes on the macro-
scopic mechanical behavior of glasses. In order to isolate
these effects, Malandro and Lacks consider the quasi-
static deformation of an amorphous material at zero-
temperature, a protocol which has been used since early
numerical studies as a means to bypass intrinsic limi-
tations of molecular dynamics algorithms. [1] For small
deformations, the system follows shear induced changes
of a local minimum (inherent structure) in the poten-
tial energy landscape. Elementary catastrophic events
occur when the local minimum in which the system re-
sides annihilates during a shear-induced collision with a
saddle point. The deformation of an amorphous mate-
rial thus involves a series of reversible (elastic) branches
intersected by plastic rearrangements (see figure 1).

The inherent structure formalism provides a precise
definition of an elementary plastic rearrangement, but
several questions arise about the spatial organization of
these transitions: Are plastic events related to shear
transformation zones and quadrupolar energy fluctua-
tions? Do they involve spatially localized dynamical
structures? If not, how do these structures scale with
system size? Conflicting answers to these questions can
be found in the literature. From measurements of partic-
ipation ratio, Malandro and Lacks indicate that the el-
ementary rearrangements they observe are localized. [9]
Durian and coworkers, for a model of foam (athermal
by construction), observe a power-law distribution of
energy drops at small strain rates, but with a system-
size independent cut-off, indicating that no scaling be-
havior is to be seen, unless at a very specific point in
the jamming phase-diagram. [11] A contradictory view-
point is supported by the observations by Yamamoto and
Onuki of increasing lengthscale suggesting the emergence
of delocalized events, and critical behavior in the low-
temperature, low strain-rate limit. [12].

In this work, we study spatial organization of elemen-
tary transitions between inherent structures in quasi-
static shear deformation, using the soft-sphere interac-
tion potential used by Durian. [13] This choice was ini-
tially motivated by our intent to avoid delocalized struc-
tures. With this model we observe: (i) quadrupolar
energy fluctuations and cascades of these during single
transitions between inherent structures, (ii) elongated,
crack-like events that span the whole shear cell. Next
(iii) we measure the distribution of energy drops and par-
ticipation ratios and show that the size of typical events
scales linearly with the length of the simulation cell. We
thus show that scaling behavior is to be found in the
quasi-static limit, and that it is associated with a cas-
cade of spatially correlated quadrupolar energy fluctua-
tions, reminiscent of theoretical considerations. [7]

We perform numerical experiments using simple shear,
or so called Lees-Edwards, boundaries. Particles interact
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FIG. 1: Potential energy as a function of strain during quasi-
static shear of a 200x200 system.

through the soft sphere-potential [13]:

Uij =

{

1
2k (1 − dij)

2
dij ≤ 1

0 dij > 1

}

, dij =
2‖~xi − ~xj‖

ri + rj

.

k, being the only energy scale in the problem is set to
unity. In order to prevent crystallization, a binary mix-

ture is used with: rL = .5, rS = rL
sin π
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5

, NL/NS =

1+
√

5
4 [3] where Ni is the number of particles of type

i. The athermal, quasistatic shear algorithm consists of
two parts. First the simulation cell is deformed by a
small amount with particle positions fixed in reciprocal
space (i.e. fixed relative to the Bravais axes of the simula-
tion cell), producing an affine deformation in real space.
Next the potential energy of the system is minimized
with the shape of the simulation cell held fixed resulting
in corrections to the affine deformation. Physically, the
quasistatic algorithm corresponds to a material which is
being sheared in a much shorter time than the thermally
induced structural relaxation time, but a much longer
time than any microscopic times: τmicro.<< 1

γ̇
<<τstruc..

The initial sample is prepared with a standard conju-
gate gradient minimization applied to a random state. A
fixed area simulation cell with a packing fraction of 1.0 is
used for all systems. This density, well above the random
close packing limit, was originally thought to preclude the
emergence of non-localized structures. [11, 14] We use a
strain step of size 10−4 for all simulations. Results will
be presented for three ensembles of systems (with sizes:
L2 = 12.5x12.5, 25x25, and 50x50) and also one single
200x200 system.

Proceeding with a discussion of the single 200x200 sys-
tem, figure 1 shows the potential energy of the relaxed
configurations as a function of the applied shear strain
for a small interval of strain from .15 to .17. The curve
is composed of continuous segments, broken up by dis-
continuous drops. Malandro and Lacks [9] have demon-
strated that each discontinuity arises from the destruc-
tion of a potential energy minimum induced by the im-
posed shear strain. In agreement with them, we find that
the system is microscopically reversible upon changing
the sense of the strain during the continuous segments,
but becomes irreversible across the discontinuities which
constitute the fundamental plastic events.

Next we look at the energy relaxation during a typi-
cal plastic event, which is circled in figure 1. The energy
and sum of the squares of the forces during the conjugate

0 1000 2000 3000 4000 5000
1658

1658.5
1659

1659.5
1660

1660.5
1661

U

0 1000 2000 3000 4000 5000
Number of Minimization Steps

0

0.05

0.1

0.15

0.2

<
F*

F>

FIG. 2: Potential energy and sum of the squares of the forces
as the system progresses through the minimization algorithm
during the event circled in figure 1, above.

gradient descent for this single energy minimization are
shown in figure 2. In these plots, the horizontal axis
represents the amount of progress through the conju-
gate gradient algorithm. We checked in smaller systems
that minimization via integrating the equations of steep-
est descent yields similar curves. In this latter case the
horizontal axis can be directly interpreted as time, but
steepest descent cannot be used in large systems due to
its intrinsic inefficiency. In steepest descent dynamics,
the time derivative of the energy is precisely the sum of
the squares of the forces, and this relation holds reason-
ably well for our conjugate gradient trajectories. Fig-
ure 2 shows plateaus in the energy, which correspond to
configurations where the forces are small and hence are
very close to being mechanical equilibria. These config-
urations are quasi-equilibria: deficient equilibria, each of
which allows for an escape into a new quasi-equilibrium
with lower energy. The system cascades through a se-
ries of quasi-equilibria of decreasing energy until finally
arresting in a true minimum.

The observation of these transitions suggests that a
typical plastic event, as circled on figure 1, might be de-
composed into elementary sub-events. Figure 3a shows
the resulting change in potential energy which occurs
during the first force peak (in figure 2). The quadrupolar
pattern is apparent. It is the first time such a field has
been observed in an atomistic simulation. We emphasize
that the energy dissipation field shown in figure 3a corre-
sponds to a single elementary sub-event and contrast this
with the work of Kabla and Debrégeas [8] who observe
such a quadrupolar field in a mechanical film model only
after averaging over many plastic events. We observe
these quadrupoles generically during the onset of other
typical events like the one circled in figure 1, however,
after the onset the situation becomes more complex as a
cascade is initiated in which the system proceeds through
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FIG. 3: a) The change in potential energy during the first
force peak in figure 2. The color scale is linear with pure
white (black) corresponding to a local decrease (increase) in
energy per unit area equal to: 5 × 10−4. The orientation of
this quadrupole is precisely what one would expect based on
the direction of the principle axes of the applied shear strain.
b) The local relative displacements (defined as the displace-
ment of a particle with respect to the average displacement
of its neighbors) that result from the entire cascade circled in
figure 1. Only displacement vectors which are larger than .1
times the maximum are drawn. The black line is a guide to
the eye oriented along the oblique Bravais axis. The particles
inside the circled cluster are those which move during the first
peak in the forces from figure 2 and produce the quadrupolar
pattern shown in a).

a series of such elementary sub-events. The spatial signa-
ture of each elementary sub-event is, of course, noisy and,
as the cascade proceeds, several elementary sub-events
may occur concurrently and overlap in space. These ef-
fects contribute to an increasingly complicated energy
dissipation field in which it is often difficult to disentan-
gle elementary quadrupolar patterns. Our observations,
however, are consistent with viewing every cascade as a
superposition of quadrupolar fields, each associated with
an elementary sub-event.

Turning to the spatial organization of the sub-events
into a cascade, the local relative displacements of each
particle are drawn in figure 3b, where the particles as-
sociated with the onset are circled. In this picture, non-
affine rearrangements cluster along the oblique Bravais
axis of the simulation cell. We observe similar crack-like
patterns generically in plastic events, aligned preferen-
tially along the oblique or non-oblique (horizontal) Bra-
vais axes. These patterns are reminiscent of the shear-
bands which are predicted by several mesoscopic mod-
els of plasticity, and are expected to emerge from the
interactions of local shear transformations mediated by
quadrupolar fluctuations in the elastic field [4–7]. We em-
phasize, however, that the patterns we observe here are
certainly distinct from persistent shear bands: they are
transient events which occur during a single, infinitesimal

strain step. The location and orientation of these pat-
terns fluctuate as the system is sheared, and by no means
can we identify the emergence of any stationary hetero-
geneous deformation field, as observed in some molecular
simulations [15].
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FIG. 4: a),b) Distribution of participation number and energy
drops for systems of lengths, 12.5,25,and 50. Insets: Scaling
of the average participation number and energy drop with
system length.

The existence of non-localized dynamical structures
is consistent with the observation by Yamamoto and
Onuki, [12] in molecular dynamics simulations of glass-
forming systems, of an increasing correlation length in
the limit where first temperature and then strain rate go
to zero. They claim that their data is consistent with the
existence of critical behavior in this limit, but were un-
able to access the putative critical point due to inherent
limitations in the molecular dynamics algorithm. Our
algorithm is exactly locked at the T → 0, γ̇ → 0 limit,
which enables us to perform finite-size scaling analysis at

this point. Before proceeding, we must emphasize that
we study here a different molecular model which was not
expected to display non-localized structures. [13] More-
over, we now show that the crack-like patterns we ob-
serve are responsible for the emergence of specific types
of scaling which were not identified in previous numerical
works.

Results for the steady-state distribution of energy
drops and participation number are given in figure 4 for
different system sizes. We first examine the distribution
of participation numbers N . We find a clear increase
of the average with the linear system size, 〈N〉 ∼ L,
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and a corresponding shift in the distribution. This scal-
ing is consistent with the assumption that the dominant
events are system spanning faults of length L with a typ-
ical transverse length scale a which does not depend on
system size. We next look at the distribution of energy
drops: it is well described by a power law with an ex-
ponential cutoff at large events. The power seems to
be slightly smaller for our largest system, and ranges
from .7 to .5, which is in rough accord with earlier re-
sults [13, 14]. However, as was the case with the partici-
pation number, we observe dramatic system size effects,
with the average energy, and the cut-off linearly increas-
ing with L. This scaling is consistent with the idea that
the energy dissipated during a plastic event scales like
〈E〉 ∼ E0〈N〉 ∼ E0L, where E0 is the elementary energy
released per quadrupolar fluctuation.

Our observations differ from previous claims found in
the literature. The distribution of participation num-
bers was studied by Malandro and Lacks for a three-
dimensional model of a glass. [9] These authors concluded
that the average participation number became indepen-
dent of system size for large systems, but their data only
disfavors an extensive (L3) scaling. From our observa-
tions, we expect that, in three dimensions, plastic events
are likely to organize into fault planes: in such a case, the
scaling would become 〈N〉 ∼ L2, which is also consistent
with Malandro and Lacks’ data. [9] Here we come to an
important point: the non-extensivity of the participation
number does not mean that structures are localized, as
sub-extensive, system-spanning, structures may emerge.

Our conclusion also differs from that of Tewari et. al.

[14], on two-dimensional models of foams. We believe this
discrepancy originates from a subtle consequence of their
use of finite strain rate simulations. In quasistatic shear,
the respective timescales of plastic events and shear are
completely separated. However, the crack-like patterns
we observe result from cascading sub-events, as informa-
tion propagates through the system; the plateaus in fig-
ure 2 correspond to times when information propagates
with little dissipation. At finite strain rate, the spatial
development of plastic events and the overall deformation
of the material occur concurrently: the plateaus of fig-
ure 2, become slightly tilted due to the overall energy
increase induced by the finite strain-rate. The crite-
rion Tewari et. al. use to separate individual plastic
events stipulates that energy should decrease monoton-
ically during a single event; it may misidentify quasi-
equilibria for true equilibria, thus precluding the com-
plete identification of elementary events. A finite shear
rate may thus “break” single plastic rearrangements into
several spurious sub-events which have no simple inter-
pretation in the energy landscape.

In conclusion, we have presented results on an atom-

istic system sheared in the athermal quasistatic limit. We
demonstrated the organization, during cascades, of ele-
mentary quadrupolar plastic zones into lines of slip ori-
ented along the Bravais axes of the cell. We proceeded
to perform a finite size scaling analysis which revealed
a linear system size dependence which indicates that the
faultlike patterns of energy fluctuations play a major rôle
in the emergence of scaling behavior. The overall picture
which emerges from our simulations thus explains and
clarifies various controversial claims found in the litera-
ture.
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